A HIGHPERFORMANCE 2-METER TRANSVERTER

Modular approach makes construction and modification easy

By Bob Lombardi, WB4EHS, 1874 Palmer Drive, Melbourne, Florida 32935

It seems that many VHF/UHF enthusiasts say they became interested in this part of the spectrum after having worked just about all of the DX available on HF. This wasn't the case for me. The possibilities of 2-meter operation appealed to me on their own merits. There is OSCAR, moonbounce, meteor scatter, SSB, CW, and a host of propagation modes to explore.

My interest in these modes of communication led me to review their requirements. I realized that commercial rigs available at the time didn't have the two main features I was looking for - a low noise figure and a selectable CW filter. Like many before me, I decided to build a transverter for my HF rig. These were my design goals:

- low noise figure, in keeping with the state of the art;
- output power in the range of 5 watts, with excellent linearity (third-order IMD at least 30 dB down);
- good rejection of a nearby NOAA weather radio relay (at least 40 dB down);
- moderate gain (enough to overcome the front end noise of the HF rig);
- good dynamic range.

I adopted a modular design approach advocated by Joe Reisert, W1JR, and others. I like this design because it gives me the ability to get sections working and tied together quickly. This, in turn, makes the project seem less like a constant uphill battle. Also, the modular method with its replaceable sections is a great benefit when you come up with a better design. The block diagram of the transverter appears in Figure 1.

Receive strip

The receive side input (Figure 2) is a GaAsFET low-noise amplifier (LNA) that uses a circuit similar to Reisert's ${ }^{1}$ and to those in general FET applications notes. The device is a single gate MGF-1402 made by Mitsubishi; it's available from several sources.* The $10-\mathrm{k}$ resistor on the input bleeds off static buildup. Any value around 10 k will work, as long as you use a carbon composition resistor. (I had a persistent and elusive oscillation; it was caused by the metal film resistor I was using!) I used diodes around the regulator to protect against regulator latch-up or inductive spikes from the T/R relay. The amplifier had a noise figure of under 0.75 dB and a gain of 23 dB , as measured on an Ailtech noise figure meter and HP network analyzer.

The filter (shown in Figure3) was described in an earlier article. ${ }^{2}$ I wanted the filter to be narrowband enough to pass all 4 MHz of the band, and still provide over 40 dB of rejection at 162.55 MHz . It provides nearly 55 dB , at a cost of about 5 dB of insertion loss. At this point, however, there was gain to burn to meet the design goals of about 10 dB of gain in the complete transverter.

A $116-\mathrm{MHz}$ overtone crystal oscillator provides the LO function for both sides of the transverter (Figure 4). The oscillator is a common base design, largely based on Reisert. ${ }^{3}$ The output was measured at +13 dBm , allowing the use of a two-way power splitter to provide LO to both mixers.

The receive mixer is a Mini-Circuits SRA-1000 (see Figure 5). It is essentially the same as their SRA-1 in this application. The IF output goes into a diplexer and 24 to $34-\mathrm{MHz}$ bandpass filter. In band, the diplexer (the parallel-resonant circuit and 51-ohm resistor) presents an open circuit, and no signal flows in the resistor. As the frequency changes the reactive components tend to short out the tank circuit, allowing signal to flow into the termination and to ground. The mixer sees the 51-ohm resistor at these frequencies.

The receiver input stage is largely responsible for determining the system noise figure, and the noise figure is degraded by any losses in front of it. If you're new to the field of low-noise design, this explains what must seem like the unconventional design of the transverter; i.e., the amplifier ahead of the filter. (This is a common design technique in microwave receiver

[^0]FIGURE 1

Block diagram of the complete transverter.

FIGURE 2

Schematic of the receive input RF amplifier.

design, like TVROs.) To minimize the effects of losses in front of the amp, I used foam-flex (hardline) coax as the feedline, with short flexible jumpers of RG-214/U where required.

Other hams have toid me on the air that my low noise figure is unnecessary in 2 -meter SSB because ground noise
predominates. While this maybe true, my idea all along was that receiver noise shouldn't be a limiting factor if I wanted to swing my antennas up for OSCAR - or anything else I might try. When you add that to the high intercept point of the GaAsFET front end, and the resulting improvement in dynamic

FIGURE 3

ALL COILS COILCRAFT T-113 $11 / 2$ TURNS G8nH WITHOUT SLUGS

* resonating caps $2.5-30 \rho F$ Variables in parallel with lopf ceramic
* * COUPLING CAPS 0.25-2.5pF TEFLON TRIMMERS

Details of the BP (bandpass) filter on the receive line.

FIGURE 4

Local oscillator using a $116-\mathrm{MHz}$ overtone crystal.

FIGURE 5

Receive and transmit mixer schematic.

2-watt carbon composition
Any value over 100 k (used as coil form)
$1 / 8$-watt carbon composition, 5 percent

18 ohm	2
300 ohm	4
68 ohm	1
100 ohm	2

SEMICONDUCTORS

Diodes	
1N4148 general purpose	6 (widely available)
1N4004 rectifier	1
1N757 9-volt zener	1
1N751 5-volt zener	1
Transistors	
2N2222 NPN	1
2N3553 NPN	1 RF Parts Company
2N5109 NPN	1 RF Parts Company
2N5179 NPN	1 RF Parts Company
MGF-1402 GaAsFET	1 RF Parts Company
MRF-134 powerFET	1 RF Parts Company

OTHERS
MWA-130 amplifier modules 78L05 5-volt regulator ior 1 (widely availiable) 1 (widely available)

MISCELLANEOUS PARTS

Ferrites
FT-23-63
1 Amidon
Beads, Ferroxcube type 4A6 4 Amidon (cross-reference)
Two-hole balun (for RFC on driver assembly)
BLN 43-2402
3 Amidon
1 Amidon (cross-reference)
Ferroxcube VK200-19/4B
TOROIDS
T44-6 2 Amidon
T20-10 2 Amidon
Note: The exact ferrite bead used in most cases isn't critical. It should present several microhenries of inductance at the operat-
ing frequency.

OTHER PARTS	
SBL-1 mixer	1 Mini-Circuits, others
SRA-1	1
TSC-2-1 power splitter	1 Mini-Circuits, others
116-MHz fifth overtone crystal	1 ICM
$5-k$ multiturn pot	1 Radio Shack
T/R power switch relay 12 volt	1 Radio Shack
T/R coaxial relay 12 volt	1 Communications Concepts
RF coaxial connectors	15 SMA female (as required)
Coaxial jumpers	(as required)
Boxes	(as required)
Feedthrough capacitors	0.001 uF 50 volts
	(as required, 1 per box)
$10 \mu H$ molded chokes	2

FIGURE 6

Transmit predriver schematic.

FIGURE 7

Driver chain schematic. RFC 1-4 = 4 turns of no. 20 wire through a two-hole ferrite balun. Amidon no. BLN 43-2402.
range, the GaAsFET still seems the most logical choice.
My initial test of the receive side yielded good results. While conducting tests with WA4GHK (15 miles south), it was easy to copy K4DZP in Miami (over 160 miles south) - despite my makeshift indoor antenna!

Transmit chain

The transmit portion of the transverter presents its own problems; the biggest is linearity. A rule of thumb for diode ring mixers (like the SBL-1 used here) is to have the input signal at least 10 dB below the LO for best linearity (see Figure 5). Because one of my design goals was to achieve very good linearity from the transmitter, the first thing I did was pad the input drive $(+3 \mathrm{dBm})$ from my HF rig. The resulting level was about $-7 \mathrm{dBm}, 14 \mathrm{~dB}$ lower than the LO drive. Since all the pads were made with the closest value resistors, and the mixer itself contributes loss, I measured the conversion loss of the transmit mixer. It was 17.7 dB .
The pre-driver stage in Figure 6 is suppposed to recover
all of the signal lost in the conversion, provide enough filtering to remove significant power on the image frequency, and reduce LO feedthrough. I used MWA-130 amplifiers, modular 50-ohm in-and-out devices in TO-5 cans, because they are easy to use and were available on a surplus board that I scavenged. The power out at this point is $4 \mathrm{~mW}(+6 \mathrm{dBm})$.
The actual drivers are two transistors, a 2N5109 and a 2N3553 (see Figure 7). The first device is a well-known VHF linear transistor; the second is a 28 -volt, TO-5 can device capable of 2 watts if run class C. This was originally to have been a three-transistor strip with 1 watt out from a third 2N3553, but I was never able to get them to more than 500 mW and still remain linear with a 12 -volt supply. I tried many variations of bias circuits, matching networks, and pc layouts. The twodevice strip I settled on produces 18 dB of gain, or about 250 mW out.
The final amp is a Motorola MRF-134 TMOS powerFET that delivers just over 4 watts out and a clean, linear signal (thirdorder intermod down just over 30 dB). See Figure 8 for details.

New from ARRL

Following the hard-cover style of Transmission Line Transformers, and Yagi Antenna Design, Antenna Impedance Matching is written with the advanced amateur, antenna design engineer and technician in mind, but even if you don't have any special expertise you'll be able to develop very sophisticated systems. This is probably the most comprehensive book ever written on the use of Smith Charts ${ }^{\text {TM }}$ in solving impedance matching problems. This 224-page book is of importance to those who want to maximize antenna effectiveness. A properly matched antenna as the termination for a line minimizes feedline losses, and power can be fed to such a line without the need for a matching network at the line input. Antenna Impedance Matching is a "must" for the antenna designer and serious amateur. The price is $\$ 15$, please add $\$ 3.50$ for shipping and handling.

THE AMERICAN RADIO RELAY LEAGUE, INC. 225 MAIN STREET NEWINGTON, CT 06111

EVERY ISSUE of HAM RADIO

now available on microfiche!
The entire run of Ham Radio Magazine (March, 1968 thru last year) is ready to ship to you in one, easy to use format.
Our 24 x microfiche is easy to read and very compact. We offer a hand held reader for $\$ 75$, and a desk model for $\$ 200$. Libraries have these readers.

As a bonus, you will receive Ham Radio Horizons ($3 / 77$ thru 12/80) free.
Everything is included, front cover to back - ads too!
Annual updates will be offered for $\$ 10$.
Send $\$ 185$ payment (visa/mc accepted) to:

BUCKMASTER

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777
visa/mc $\quad 800 / 282-5628$

GET A BIRD'S EYE VIEW
From GrafTrak II ${ }^{\text {TM }}$ and your IBM ${ }^{8}$ PC

GrafTrak 11^{10} provides real-time graphic display of a flat projection map which moves under the selected satellite(sat)/Sun/Moon/star coverage cirele and updates once per second. Features include spherical projection views, graphic screen dumps to an IBM/Epson/Oki or HP LaserJet Series II printer, selectable latlon gnd intervals, disk command files, automatic control of antenna rotators with full 180 degree elevation, coverage swath display for weather sats, multiple range circles, automatic sat switching, real-time ground track display, and squint angle display
Silicon Ephemeris ${ }^{\text {to }}$ provides tabular data output to the screen, printer, or disk file for the following operating modes: I observeriobs to 16 sats, 16 obs to 1 sat, schedule for I obs to I sat. window between 2 obs and I sat, rise and set times for I sat, time ordered rise and set times for 16 sats, Almanac for Sun and Moon, 16 obs to Sun/Moon, schedule for 1 obs to Moon, window between 2 obs and Moon, schedule for I obs to Sun, and optical visibility schedule
The package includes an editor program used to construct and modify sat/obs data base files. In addition, a program to update data base files from bulletin boards. complete source code for a compatible rotator and receiver control program and several other atilities are included
Requires an IBM PC, PC/XT, PC/AT, or true compatible, an IBM Color/Graphics Monitor Adaptor or true compatible, optional but recommended 80×87 math coprocessor, minimum 512 K RAM, DOS 2.0 or later, and either two 360 K floppy drives or one 360 K floppy and one hard drive; the programs are not copy protected.
The complete package is $\$ 395$ (L.st Price). Call for quotation Check, money order, MasterCard, or VISA accepted Silicon Solutions. Inc. - P. O. Box 742546 - Houston. Texas 77274-2546 - (713) 777-3057

Iniline (rf switched)

SP28VD	$28-30$	<1.2	15	0	DGFET	$\$ 59.95$
SP50VD	$50-54$	<1.4	15	0	DGFET	$\$ 59.95$
SP50VDG	$50-54$	<0.55	24	+12	GaAsFET	$\$ 109.95$
SP144VD	$144-148$	<1.6	15	0	DGFET	$\$ 59.95$
SP144VDA	$144-148$	<1.1	15	0	DGFET	$\$ 67.95$
SP144VDG	$144-148$	<0.55	24	+12	GaAsFET	$\$ 109.95$
SP220VD	$220-225$	<1.9	15	0	DGFET	$\$ 59.95$
SP220VDA	$220-225$	<1.3	15	0	DGFET	$\$ 67.95$
SP220VDG	$220-225$	<0.55	20	+12	GaAsFET	$\$ 109.95$
SP432VD	$420-450$	<1.9	15	-20	Bipolar	$\$ 62.95$
SP432VDA	$420-450$	<1.2	17	-20	Bipolar	$\$ 79.95$
SP432VDG	$420-450$	<0.55	16	+12	GaAsFET	$\$ 109.95$

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP346A state-of-the-art noise figure meter. RX only preamplifiers are for recelve applications only. Inline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transcelver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers availabie In the $1 \cdot 1000 \mathrm{MHz}$ range. Please inciude S shipping in

Advanced Receiver Research

 U.S. and Canada. Connecticut residents add $7.1 / 2 \%$ sales tax. C.O.D. orders add \$2. Air mail to ioreign counpreamplifier today and start hearing like never beforel

CATALOGS HAM $>$ Transceivers $>$ HF-VHF-UHF
 > Antennas
 >RTTY-Packet
 >Receivers
 $>$ Books \& Accs
 Only \$1 Postpaid
 SWL
 $>$ Receivers
 > Antennas
 > Tuners
 > Heaphones
 $>$ RTTY-FAX
 $>$ Books \& Accs.
 Only \$1 Postpaid

Send Universal Radio
Hex
1280 Alda Drive Dept. HR
Reynoldsburg, OH 43068

FIGURE 8

Final amplifier using an MRF-134.
All design decisions are tradeoffs. For example, using the MRF- 134 created the need for a small 24 -volt supply -- but I gained advantages in other areas. First, the FET is guaranteed to deliver rated power into a 30:1 VSWR at any phase angle (no delicate device here!!; second, it's capable of more gain in one package than a bipolar; and last, it worked the first time Itried it - a very enjoyable experience after my trials and tribulations with the '3553s.

The circuit is taken largely from the Motorola RF Data Book applications note. ${ }^{4}$ Component changes are based on availability and personal preferences. In any RF power amplifier it's essential to keep the ground leads of the device as close as possible to ground on the board. I connected top and bottom foil with a strip of copper shim stock at the point where the source leads leave the device package. The FET itself is on an extremely overrated heat sink; after extended key down periods everything remains at ambient temperature.
The outputfilter in Figure 9 is an elliptical low-pass design. The two parallel resonant circuits are tuned to 313 and 487 MHz with a grid-dip meter; the other caps are adjusted for minimum insertion loss while you watch output power on a wattmeter. My version had a measured insertion loss of under 0.2 dB .

I used a simple comparator on the PTT line from the HF rig to do the T/R switching (see Figure 10). The relay is DPDT. It switches 12 and 24 volts to the transmit amplifiers and 12 volts to the antenna relay (a Dow-Key relay I picked up at a local hamfest). The relay provides over 40 dB of isolation during transmit; the GaAsFET sees -4 dBm , well within its capabilities. (I leave it powered on continuously.) This relay should be adequate at power levels of up to 100 watts.

Construction and alignment

This is a sophisticated project and you'll need building experience. If you've had experience with other RF circuitry, you'll find it presents few special challenges. I used pc boards

FIGURE 9

Schematic of the transmit LPF (low pass filter).
for the GaAsFET RF amplifier, filters, and all transmit stages. The LO, mixers, and the T/R switching boards are built "dead bug" style; they function quite well that way. If you are an experienced builder who uses point-to-point techniques at these frequencies, you may want to use that method. I used SMA connectors on small-diameter coax (RG-188) for signal interconnects. You may prefer to use BNCs. Likewise, I used pc board material for housing circuits - you may prefer commercially made enclosures.
I've already mentioned the need to keep grounds shorton the final amplifier; the same holds true for the driver stages. This is the strongest argument for using pc boards for these stages. The emitters of the driver transistors are grounded immediately, with minimal lead length.
There are no "peculiarities" of alignment. Align the filters separately, tuning them as desired. It's best to align the transmit stages with a spectrum analyzer. Tune the drivers for best output while observing third-order intermod. This will not occur at maximum power out. The same applies to the final amplifier.
Ideally, the GaAsFET should be aligned with noise figure instrumentation. If that isn't available, tune for maximum noise level by ear, and then detune slightly. The optimum noise fig-
 Saturday \& Sunday 10 to 5 P.M.
Monday-Friday 9 to 6:30 PM Thurs, to 8 PM Come to Barry's for the best buys in town

For the best buys in town call: 212.925-7000 Los Precios Mas Bajos en Nueva York WE SHIP WORLDWIDE!

TCOM
CARIA. 751 A . $781,28 \mathrm{NH}$ 38A. 48 A Mcrozi4, A. H .750 . IC 900 , IC-228H. IC725. IC448A whericemic

KENWOOD

 RuaE π, 85, s5. 17 Wilimeter

 Tokyo Hy-Power/TE SYSTEMS Amplifiers \&
5/8 X. HT Gain
Antennas IN STOCK

Computer interfaces
Stocked MF- 1270 B Stocked: MFJ-12708,
MFJ.1274. MF -1224, AEA PK.88, MFJ.1278.PK.232 PK. 88, MF
W/FAX
 MOTOROLA AUTHORIZED DEALER KACHINA COMMUNICATIONS DEALER
AUTHORIZED

SONY

 DEALER Long iwroe Wivess.
Teteonone tor expor in Hock BENCHER PADDLES. 6) BALUNS. LOW PASS FILTERS MIRAGE AMPLIFIERS ASTRON POWER SUPPLIES Saxton Wire \& Cable. Int'I Wire
AEA 144 MHz AEA 220 MHz AEA 440 MHz MAIL ALL ORDERS TO: BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012 (FOUR BLOCKS NORTH OF CANAL ST.)

New York City's
 LARGEST STOCKING HAM DEALER

"Aqui Se Habla Espanol'
BARAY INTERNATIONAL TELEX 12.7670 MERCHANDISE TAKEN ON CONSIGNMENT FOR TOP PRICES

 IRT/LEX."Spring St Station" Subways: BMT -uce Sr station NID."F" Train-Bwy Station | Bus: B/ |
| :--- |
| Sitaton |

\qquad SALES
FINAL
 Daiwa. Emac. Henry. Hed, Hustler. Hy-Gain, Icom, KLM, Kantronics Larsen,
M.J. JW Maller, Mrage, Nye. Paiomar, RF Products. Saxton, Shure, Tempo. Ten-Tec, TUBES Yaesu, Vibroplex, Duplexers, Repeaters, Scanners, Radio Publications, Uniden, Kenwood, Maxon, RFC

WE NOW STOCK COMutrCIaL COMuUnications systems U DEALEA NOURES INMTEO PHONE D YOUA ORDEA S BE RE MEUASED COMmERCIAL RADIOS atoeked a eerviced on promiees. Amateur Radio Courses Given On Our Premises, Call Export Ordere Shipped Immediately. TELEX 12-7670 FAX: 212-925-7001

MICROWAVE ANTENNAS AND EQUIPMENT Loop Yagis * Power Dividers * Linear Amplifiers * Compiete Arrays - Microwave Transverters * GaAs FET Preamps -TROPO * EME *Weak Signal * OSCAR * 902 * 1269 * 1296 - $2304 \cdot 2400 \cdot 3456 \mathrm{MHz}$

2345 LY	45 el	loop Yagi	1296 MHz	20dBI	\$99
1345 LY	45 el	loop Yagi	2304 MHz	20dBI	\$80
3333 LY	33el	loop Yagi	902 MHz	18.5 dBI	\$99
Above antennas assembled and tested. Kits available.					
Add \$8 UPS S/H, \$11 West of the Mississippi MICROWAVE LINEAR AMPLIFIERS SSB, ATV, REPEATER, OSCAR					
2316 PA	Iw	8w out	$1240-1300 \mathrm{MHz}$	13.8 V	\$265
2335 PA	10w in	35w out	$1240-1300 \mathrm{MHz}$	13.8 V	\$315
3318 PA	1 w	20w out	$900-930 \mathrm{MHz}$	13.8 V	\$265
3335 PA	10w	Ow out	$900-930 \mathrm{MHz}$	13.8 V	\$320
23LNA P	amp 0	dB N.F.	1296 MHz		\$ 90
33LNA p	amp	dB N.F.	902 MHz		
Add 35 shipping UPS/48					
Luw 1296 \& 2304 mitr transverter kits in stock					
	DOWN EAST MICROWAVE Bill Olson, W3HQT ox 2310, RR 1, Troy, ME 04987 (207) 948-3741				

NEW! No Tune Microwave Linear Converters

Board level RX/TX transverter modules and local oscillator: kit or assembled/tested Linear operation allows all modes, ATV, SSB, Digital, Packet, FM.
Available for: $903,1269,1296,2304,3456 \mathrm{MHz}$ COMPLETE KITS
SHF 900 K with integral LO for 902 MHz
SHF 1240 K for $1240-1300 \mathrm{MHz}$ - specify 1269 or 1296 base
SHF 2304 K for $2300-2450 \mathrm{MHz}$ - MODE S downlink package available
SHF 3456 K for 3456 MHz $\$ 185$
SHF-LO LO kit only, with XTL, 540-580 $\mathrm{MHz},+10-+14 \mathrm{dBm}$ out
\$ 60
Call or write for details on complete transverters and options.

"ONLINE" U.S. CALL DIRECTORY
Hamcall service gives you all hams via your computer \& modem. Updated each month! Only $\$ 29.95$ per year. Unlimited use - you pay for phone call.

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777 visa/mc 800/282-5628

FIGURE 10

T/R switch schematic.

ure match isn't far from max gain, but that's about as quantitative as I can get.

Performance

On-the-air results have been good. I actually used the transverter for quite a while at the $250-\mathrm{mW}$ level, and surprised myself by working most of peninsular Florida. I made some of my best contacts with an indoor antenna and the pieces of my project spread across my desk. Moving up to 4 watts put me within 3 dB of the mainstream of off-the-shelf 2 -meter SSB rigs (that's about half of one S -unit), and to a level that could be used with commercial amplifiers. It also netted me contacts with five southeastern states using a small antenna at rooftop height.
I'd like to thank Jim Hagan, WA4GHK, for his part in the conceptual design of this circuit and for helping me with on-theair tests. w

Parts sources
Digi.Key
701 Brooks Avenue South. PO Box 677.
Thiet River Falls. Minnesota 56701-0677
A broad line of passives, semiconductors, and tools
Mini-Circuits
PO. Box 350166, Brooklyn. New York 11235-0003
Mixers, splitters, hybrids, etc. will sell to individuals
Amidon Associates
12033 Otsego Street. North Hollywood. California 91607
Toroids, ferrites, inductive components
Communications Concepts, Inc
121 Brown Street. Dayton, Ohio 45402
RF parts and kits, hard-to-find trummers, chup caps, Iransistors, ATV parts
RF Parts
1320 Grand Avenue, San Marcos, California 92069
RF power devices, GaAsFETS, and many other transistors

REFERENCES

1 JoeRersert. WIJR. Low Noise GaAsFEI Technology. Harm Radro. December 1984, pages 99112 2 Bob Lombard. WB4EHS "Buid Narrowband Filters." Ham Radio March 1986 pages 10-21 3 JoeResent WIJF. High DynamicRange on 2 Meters. Ham Radio, November 1985 pages 5464 4 Technical Statt ed Motorola RF Device Data Book, Anzona 1986

LOGWRITE ${ }^{\text {' }}$

Bring fout station into the computet age with LOGWRITE, the menu driven, user friendly logging program written by Ed Troy (NG3V, LOGWRITE is the perfect mccessory for the you the competitive edge in conlesting and DXing LOGWRITE works with all IBM PCr and compatibies.

LOGWRITEs unique split screen feature allows for simul taneous logging and text processing Logging features include

- Instant call sign or prefix search
- Print, Edit, or View records
- Plenty of room for notes 8 addresses - Autornatic time/date stamping

Text processor features automatic word wrap, backspace cor rect, and scrolling. Throw away your pen and papert
To order yout copy of LOGWRITE, complete with instruction manual, send 52495 (Pa residents add 5150 sales tax) to

Aerospace Consulting
P.O. Box 536, Buckingham, PA 18912
(215) 345.7184
 Card. (Please specify 35 or 525 inch floppy.)

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy + /- 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc @ $1 / 2$ Amp • Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

[^0]: *See parts sources at the end of the article. Ed

